Compact Heat Exchangers for Microturbines
نویسنده
چکیده
With distributed power generation market, the most economical solution today is to generate power through small gas turbine systems, arbitrarily categorized as microturbines (5 – 200 kW) and miniturbines (200 – 500 kW). The thermal efficiency of such microturbines is about 20% or less if no recuperator is used in the system. Using a recuperator (regenerator can also be considered but has a number of problems) operating at 87% effectiveness, the efficiency of the gas turbine system increases to about 30%, a substantial performance improvement. However, cost of the recuperator is about 25 – 30% of the total power plant. This means that the heat exchanger (recuperator) must be designed to get high performance with minimum cost. While the offset strip fin geometry is one of the highest performing surface it is also quite expensive to manufacture. This necessitates the use of all prime surface heat exchangers with no brazing. In this paper, after providing the necessary concise information on microturbines, the discussion is presented on various types of heat exchanger surfaces and novel designs considered for the cost effective heat exchangers and packaging in the system. For hot fluid inlet temperature of less than about 675°C, stainless steel material can be used for the heat exchanger, which has reasonable cost. However, for higher inlet temperatures in heat exchangers associated with higher turbine inlet temperatures, superalloys are essential which increases the material cost of the exchanger alone by a factor of 4 to 5. The design, material/finished heat exchanger cost, performance, durability, and other related issues of compact heat exchangers for microturbines are covered in this paper. The discussion and coverage is primarily for metal heat exchangers since the ceramic heat exchangers are in infant stage after last 50 years of development associated with the gas turbine applications.
منابع مشابه
The effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers
Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...
متن کاملFull Analysis of Low Finned Tube Heat Exchangers
In this paper, first the governing parameters characterizing low-finned tubes are reviewed. Second, the more important of the available performance correlations are compared with the available experimental data. The most reliable one can be employed to develop a pressure drop relationship, which has already been used in an algorithm for exchanger sizing. Also a means for the identification of a...
متن کاملOptimization of Finned-Tube Heat Exchanger with Minimizing the Entropy Production rate
A compact fin-tube heat exchanger is used to transfer current fluid heat inside the tubes into the air outside. In this study, entropy production and optimized Reynolds number for finned-tube heat exchangers based on the minimum entropy production have been investigated. As a result, the total entropy of compact heat exchangers, which is the summation of the production rate of fluid entropy ins...
متن کاملThe effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers
Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...
متن کاملThe effect of Geometrical parameters on heat transfer coefficient in helical double tube exchangers
Helical coil heat exchangers are widely used in industrial applications ranging fromcryogenic processes, air-conditioning, and nuclear reactors to waste heat recovery due totheir compact size and high heat transfer coefficient. In this kind of heat exchangers, flowand heat transfer are complicated. This paper reports a numerical investigation of theinfluence of different parameters such as coil...
متن کامل